
16 17OPINIONS NEXT

Scaling
the
Startup
ADOPT A DEVOPS MINDSET FOR
A SUCCESSFUL TRANSITION

BY BOB DUSSAULT

Your customers don’t care if you’re small. When they report
a problem, they want it fixed. When they ask for a new
feature, they want it delivered as soon as possible. For the
resource-constrained startup trying to mature, this can pose
a significant challenge. You need to introduce more process
and standards to ensure quality, resiliency, and security as
you scale. But at the same time, you can’t afford to squelch
the innovation and agility that led to your earlier success.

THROUGHPUT WITH QUALITY
I lead IT operations for a fast-moving educational software
company. We’re also a startup, with all the associated
goals and challenges: commercialize as fast as possible,
but with all the control and assurance necessary to meet
customer expectations for the product. Then scale like hell.

Like most startups, we run lean, so adopting a platform as
a service (PaaS) strategy gave us the economies of scale
and ability to quickly spin up and provision the resources
we needed to commercialize what began in a university lab
incubator. We use Amazon Web Services (AWS), but thanks
to our DevOps mindset and the process I’m about to share
with you, we’re not locked into any one vendor or platform
that could limit our vision or ability to innovate.

That would be a constraint, and that’s the number one
enemy of the DevOps mindset.

WHAT IS THE DEVOPS MINDSET?
The DevOps mindset focuses everyone’s attention on one
thing: removing all constraints from the value stream that
produces meaningful things for your customers and your
business. Nothing is sacred. Not culture. Not process. And
definitely not tools.

To identify the constraints and make the right choices for
accelerating value now and in the future, we developed
the following framework:

1. Understand what we have
2. Know where we want to go
3. Start from the top down: culture, architecture,

processes, then tools
4. Experiment, fail fast, and codify our successes

Here’s a brief run-through of what that looked like for us.

1: Understand What You Have and What You Can Let Burn
Before making changes, we first needed to understand
what we really had. Most of what we had was in our
CTO’s head. So for us, the first order of business was to
get everything documented and to determine our level
of resilience and scalability. When you’re running fast,
you often leave a trail of technical debt. To find the time
we needed to mature our DevOps value stream, we
made a conscious effort to fix only those issues that had

a meaningful impact on customer experience or were
critical to our ability to deliver services. These were quick
conversations. Is it important, or can we “let it burn”?

2: Know Where You Want to Go
Our firefighting efforts bought us two things: a reasonably
resilient and stable minimal viable product, and the time
we needed to plan and implement the fully realized vision
our founders intended. We hired a product strategist,
reviewed all the capabilities and features that our founders
wanted to get into the real world, and laid out our product
and software roadmaps. Then we compartmentalized
features and upgrades into bundles that were easier to
digest and pushed them into our systems development life
cycle so we could deliver them in a predictable manner.

3: Start from the Top Down
Once you have your roadmaps in place—and they don’t
have to be very detailed—you can begin to focus on
how to get there. This is where you will start to see the
constraint points in your value stream. Constraints can be
removed through culture, with processes, with tools, or
with a combination of these. But you won’t know until you
start experimenting. And you can’t experiment until you
ask yourself some questions. You’re still not talking about
tools. These should be big architectural questions:

• Based on our product roadmap, how might we need
or want to change our technology stack?

• Is our database architecture scalable?
• Where does it make sense to look at our own data

center versus a hosted service?
• Should we use a different application framework?

The answers can be found through the lens of your
own constraints. For instance, we knew we had an issue
integrating with school information systems. One way to
solve this issue would be to use application segmentation,
by writing a microservice focused on that single task.
Moving to a microservices architecture would mean fewer
restrictions on where these loosely coupled, containerized
apps needed to reside. And that decision would have a
direct impact on our platform strategy and the notion of
vendor lock-in I mentioned earlier.

Our entire journey is framed around adding automation
into the value stream. We had to get to the point where
the developers were not waiting on operations to deliver
new services. But there was still the issue of security and
compliance. Do we allow people to push directly into
production, or should there be gates? So we were very
interested in infrastructure as code, and in change control
with automated assurance.

Automation removes ambiguity from a process. When you
spin up an Amazon Elastic Compute Cloud (EC2) server

19NEXT

based on a configuration articulated in a job ticket, it may
or may not meet the needs of the task. But if you create
a cloud formation stack and write a script with a “deploy
this when that” trigger, you know what you’re going to get
every single time.

You can apply this level of automation to development
and integration testing as well. By having trust early in the
development cycle, you can increase agility and quality,
and the back-end constraints start to fall away.

When you view your existing processes through the lens
of your constraints and the ideals of your product roadmap
and cultural pillar, ask yourself: Do our processes still
make sense? If they don’t, move on. If they do, it’s time
to experiment.

4: Experiment, Fail, and Codify Successes
Our CTO has a PhD in data analytics and follows a rigorous
scientific method when experimenting with potential big
data solutions. The methodology I follow in operations
(and am helping to push into development) is a bit more
straightforward:

• What is the business need?
• Does the solution fit within our roadmap vision?
• Is it practical from a logistics standpoint?
• Is it cost-effective?

Cost is the least important factor. If it works, we know it’ll
save us money in the long run, because we’ll get more
done. If the experiment fails, you move on quickly. If it
succeeds, you have something you can codify into a new
published process.

A WORD ABOUT TOOLS
Tools are important, but they’re just that: tools. They’re
meant to serve you, not the other way around. We use Jira
for job ticketing and tracking, but we don’t let limitations
with Jira dictate changes to our workflows. If the tool
doesn’t remove a constraint, or if it creates new ones, you
need a new tool. There are no sacred cows.

Ultimately, the DevOps mindset is about going back
to basics—to the principles of customer focus, agility,
and that single-minded determination to knock down
obstacles to success. You do that by understanding your
value stream and the constraint you’re trying to solve for.
Then ask yourself questions, starting with architecture and
frameworks and then moving on to individual processes
and tools.

We love the kanban board tool Trello. Yet here I am with
our director of engineering, sitting cross-legged on the
floor, staring at a bunch of Post-it notes on the wall. It
works. And we have plenty of Post-its and a lot more wall.

About the Author Bob Dussault is Senior Director of Data
Center and Technical Operations at FastBridge Learning.
Or as Bob puts it, “an infrastructure guy who has spent
the last ten years figuring out how best to provide secure
and agile resources for a software-as-a-service (SaaS)
provider.”

Toolbox
The tools you use will be unique to your
needs. In case you’re wondering, here’s
what we’re experimenting with:
• Continuous integration (CI): Jenkins
• Version control: Switched from

Subversion to Git to work in a
distributed fashion

• Build agent: Maven
• Test automation: Selenium
• SQL schema consistency: Redgate SQL

Toolbelt
• Structural administration: Kubernetes

and Puppet
• Monitoring and metrics: New Relic and

Google Analytics

AD

C

M

Y

CM

MY

CY

CMY

K

ad-nutanix-next-magazine-8.5x5.5.pdf 1 9/27/17 3:17 PM

